Analysis of transcript changes in a heme-deficient mutant of Escherichia coli in response to CORM-3 [Ru(CO)3Cl(glycinate)]

نویسندگان

  • Jayne Louise Wilson
  • Samantha McLean
  • Ronald Begg
  • Guido Sanguinetti
  • Robert K. Poole
چکیده

This article describes in extended detail the methodology applied for acquisition of transcriptomic data, and subsequent statistical data modelling, published by Wilson et al. (2015) in a study of the effects of carbon monoxide-releasing molecule-3 (CORM-3 [Ru(CO)3Cl(glycinate)]) on heme-deficient bacteria. The objective was to identify non-heme targets of CORM action. Carbon monoxide (CO) interacts with heme-containing proteins, in particular respiratory cytochromes; however, CORMs have been shown to elicit multifaceted effects in bacteria, suggesting that the compounds may have additional targets. We therefore sought to elucidate the activity of CORM-3, the first water-soluble CORM and one of the most characterised CORMs to date, in bacteria devoid of heme synthesis. Importantly, we also tested inactive CORM-3 (iCORM-3), a ruthenium co-ligand fragment that does not release CO, in order to differentiate between CO- and compound-related effects. A well-established hemA mutant of Escherichia coli was used for the study and, for comparison, parallel experiments were performed on the corresponding wild-type strain. Global transcriptomic changes induced by CORM-3 and iCORM-3 were evaluated using a Two-Color Microarray-Based Prokaryote Analysis (FairPlay III Labeling) by Agilent Technologies (Inc. 2009). Data acquisition was carried out using Agilent Feature Extraction software (v6.5) and data normalisation, as well as information about gene products and their function was obtained from GeneSpring GX v7.3 (Agilent Technologies). Functional category lists were created using KEGG (Kyoto Encyclopedia of Genes and Genomes). Relevant regulatory proteins for each gene were identified, where available, using regulonDB and EcoCyc (World Wide Web). Statistical data modelling was performed on the gene expression data to infer transcription factor activities. The transcriptomic data can be accessed through NCBI's Gene Expression Omnibus (GEO): series accession number GSE55097 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55097).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli

AIMS Carbon monoxide-releasing molecules (CORMs) are being developed with the ultimate goal of safely utilizing the therapeutic potential of CO clinically, including applications in antimicrobial therapy. Hemes are generally considered the prime targets of CO and CORMs, so we tested this hypothesis using heme-deficient bacteria, applying cellular, transcriptomic, and biochemical tools. RESULT...

متن کامل

Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli.

AIMS Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. RESULTS CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions...

متن کامل

Carbon monoxide - releasing antibacterial molecules target respiration and global transcriptional regulators * S

Carbon monoxide, a classical respiratory inhibitor, also exerts vasodilatory, antiinflammatory and anti-apoptotic effects. COreleasing molecules (CO-RMs) have therapeutic value, increasing phagocytosis and reducing sepsis-induced lethality. Here we identify for the first time the bacterial targets of CORM-3, Ru(CO)3Cl(glycinate), a ruthenium-based carbonyl that liberates CO rapidly under physio...

متن کامل

Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators.

Carbon monoxide, a classical respiratory inhibitor, also exerts vasodilatory, anti-inflammatory, and antiapoptotic effects. CO-releasing molecules have therapeutic value, increasing phagocytosis and reducing sepsis-induced lethality. Here we identify for the first time the bacterial targets of Ru(CO)(3)Cl(glycinate) (CORM-3), a ruthenium-based carbonyl that liberates CO rapidly under physiologi...

متن کامل

Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli.

We recently reported that carbon monoxide (CO) has bactericidal activity. To understand its mode of action we analysed the gene expression changes occurring when Escherichia coli, grown aerobically and anaerobically, is treated with the CO-releasing molecule CORM-2 (tricarbonyldichlororuthenium(II) dimer). Microarray analysis shows that the E. coli CORM-2 response is multifaceted, with a high n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015